
Inspecting neural network internals using generated toy data

Gerben <gerben@treora.com>

6th April 2015

NOTE: This is a paper-compatible version of this publication. Due to physical limitations of paper, the included
code examples cannot be executed. To reproduce and modify the experiments, access the full publication at
http://archive.treora.com/2015/toydata.

Abstract

This student project report promotes a generic method for evaluating, and gaining insight in, neural network

algorithms by using toy data sets for which descriptive `desired' features have been predetermined. The desired

features correspond to latent variables used to generate the data, the values of which are treated as `hidden

labels'. The idea is that a trained network's neural activations can be compared to the hidden labels, to give

insight in what exactly the network learns, contrasted with what we expect or desire it to learn. The level of

correspondence can be used as a quality measure for the learning algorithm. Bypassing the learning algorithm,

the network's parameters can also be con�gured more directly using the hidden labels, in order to check whether

the model actually possesses the representational power required to discriminate the desired features.

An important challenge is the design of toy data generators, which should produce toy data sets of low

dimensionality while possessing properties found in real world data. Experiments have been performed with toy

data consisting of 20-dimensional binary vectors, generated using two layers of latent variables. The data has

been applied to a two-layer stacked RBM, and to an MLP, providing valuable insights in how they react to the

statistics of their training data.

generate toy data feed data to
neural network

evaluate if neurons
found latent variables

data

latent variables

neural
activations

Figure 1: The general idea.

1 Introduction

In the development of neural network algorithms, simpli�ed data sets are commonly used to evaluate an algorithm's
performance. A well-known example is the mnist data set, consisting of monochrome images each picturing one
hand-written digit. However, even such a `toy' data set is too complex and high-dimensional to fully understand
the data: digits only look so simple to us because we already possess a superb visual system ourselves. It is di�cult

1

http://archive.treora.com/2015/toydata

to evaluate if the algorithm is learning things sensibly when lacking an understanding of what would be sensible.
We can test whether the trained network correctly classi�es the digits, but that is a crude measurement that gives
no insight in the network's internal behaviour. We can inspect weight matrices, but we cannot do much more than
visualising some features and mumbling �yes, that looks a bit like the corner of a seven..�. Especially problematic are
unsupervised algorithms, which are often evaluated by measuring whether a supervised algorithm initialised with
the found weights will give good classi�cation results. This shortage of ways to evaluate more precisely how well the
algorithm is learning feeds the longing for having data sets for which we already know `desired' features: features
that describe the data well, and that we expect a reasonably intelligent algorithm to learn to detect. Training our
algorithm on such a dataset would enable us to inspect the learned features and compare them to those we hoped
to �nd. By keeping the dimensionality of this data small, it becomes feasible to manually track and understand
the algorithm's behaviour, inspect weight matrices and neural activations, and possibly obtain valuable insights for
improving the algorithm.

Of course, this method relies on many assumptions and in many situations it may not be applicable or useful.
It only works for testing fundamental principles of an algorithm, and not at all for tweaking the algorithm for a
speci�c problem, because the used data is simpli�ed a lot. Also, it is only useful if one has presumptions about
how an algorithm ought to react internally upon the given data. These conditions are met most �ttingly when one
is experimenting with ideas for relatively new types of network architectures and learning algorithms.

Generated toy data sets have been used more often in the �eld of machine learning, though commonly they do not
provide latent variables except possibly a single class label or target value per sample[6]. For evaluating unsupervised
learning algorithms, inspecting what the neurons have learned has also been done more often. For example, in the
famous `face and cat detector' paper[1], the researchers searched the network for neurons that activate when (cat)
faces are visible in the input image. However, the key idea in my research is to combine the concepts of generating
toy data from descriptive latent variables and assessing whether a neural network has learned desired features.
Some searching and asking around did not lead to any existing publications in this direction.

Unable to �nd usable previous work, I decided to experiment with the idea myself by creating a toy data generator,
applying its produced toy data to neural networks, and comparing the hidden layer activations with the hidden
labels of the toy data. To try out the method, o�-the-shelf neural network algorithms have been used, namely
stacked Restricted Boltzmann Machines (RBM) to try it with unsupervised learning, and a Multilayer Perceptron
Network (MLP) for supervised learning.

In the remainder of this paper, I will describe the method (section 2) and the considerations regarding and design
of a toy data generator (3), and then describe the experiments with unsupervised (4) and supervised learning
algorithms (5), followed by a conclusion and suggestions for future directions (6).

Reproducability and explorability

Before moving on, a small note about the form of this publication. This publication is intended to enable the reader
to reproduce all results on the spot, and readers are encouraged to play around and modify the experiments, for
example by changing the toy data generator or plugging in di�erent learning algorithms. Most of the code has
been written with adaptability in mind, making very few assumptions about input dimensions, numbers of layers,
et cetera.

Throughout this report, code snippets will be given that can reproduce the shown results in a Python interpreter.
To use them, start with importing the used functions from the accompanying code, and possibly �x the random
number generator:

from experiments import *

seed = set_random_seed(123)

When using IPython Notebook, for which this publication is principally intended, run these lines to display �gures
inline and to automatically reload modules when you change the source �les:

2

%matplotlib inline

%load_ext autoreload

%autoreload 2

In other environments, running fig.show() may be required to show �gures.

2 Method

The core principle of the method is to inspect whether a neural network learns in the way you expect or desire it
to learn. The method can be seen as doing supervised evaluation not only on neurons that were trained to match
a label, but also on all hidden neurons, by comparing them to known hidden labels (in a loose way, more on that
below). This makes the method usable for (deep) supervised as well as for unsupervised learning algorithms, where
in the latter case all neurons are hidden neurons and all labels are hidden labels.

Evaluating an algorithm would roughly take the following steps:

1. Create/obtain a toy data set (discussed in the next section), split into training and test parts

2. Train the algorithm with the training data, but withholding the hidden labels

3. Pass the test data to the network to transform it into neuron activations

4. Evaluate the correspondence between the activations and the data's hidden (& visible) labels

5. Visualise and inspect the correspondences, mismatches, neuron activations, and network weights

2.1 Feature comparison

An important question is of course why we want the algorithm to learn those desired features, and consider others
to be inferior. If the algorithm �nds other features, perhaps those are at least as good. Especially in the case of
supervised learning, one could say that whichever features provide for the best end result are good features. There
are several answers to this question.

Firstly, in many cases not just anything that works is okay. Checking for detection of very descriptive latent variables
can be a way to test for over�tting. In the unsupervised case, it veri�es that the algorithm learns to detect features
that are actually descriptive of the data, and possibly useful for other tasks. In the supervised case it veri�es that
classi�cations are not based on the wrong reasons. When designing an algorithm, one probably has some conception
of the kind of things it should learn, and this method seeks to provide a way to test these conceptions.

Secondly, there is much freedom in how comparison between neuron activations and hidden labels is done. It

should probably not be a measurement of element-wise errors (e.g. E (\bfith , \bfitl) =
\sum

i

\bigl(
h[i] - l[i]

\bigr) 2
) as is usually done in

supervised learning. At the very least, the ordering of features in a layer should normally not matter, so a better
measure would be to take the best (element-wise) score among all permutations of \bfh (e.g. \mathrm{m}\mathrm{i}\mathrm{n}\bfith \bfitp \in \itS \ity \itm (\bfith) E (\bfith \bfitp , \bfitl)).
A comparison function can be designed to allow features to be distributed instead of represented by a single
(`grandmother') neuron. For example, the distances between sample pairs in `neural representation space' could
be compared to distances of those in `label space', to accept any hidden activation patterns, as long as similarly
labelled items cause similar activations.1

Thirdly, maybe it is the case indeed that the network learns better features than those we desired it to learn. Though
our evaluation results would then not be a useful quality measure, drawing this conclusion can give insight in what
the network actually learns in contrast to our what we expected it to, and perhaps it gives new understanding
of the data. Maybe the found features could be accounted for by changing the hidden labels, or by changing the
comparison function.

1Yet untried but interesting. Inspired by [3].

3

2.2 Assessing representational power

If the network does not learn the features as desired, the cause can either lie in the learning algorithm not �nding
the desired model parameters, or it could be that there simply is no con�guration of parameters that would give
the desired results. One can attempt to falsify the latter hypothesis by exploring the representational power of the
model, helped by the hidden labels of the toy data. How to do this depends on the model, but the idea is to do
supervised training on what normally are the hidden layers of the network, using the hidden labels as targets for
some chosen neurons. If the scale is small enough, one could even try to set the parameters manually. The thus
obtained network can be evaluated as before, and if it performs better with these forged parameters than with ones
it would normally learn, the representational power is su�cient and it is the learning algorithm that should be
improved.

3 Toy data generation

An important aspect of this method is the availability of a data set with known descriptive features. A convenient
way of obtaining such data is to generate it algorithmically as a function of a few random latent variables. The latent
variables de�ne the manifolds of the data, and their values can be used as the hidden labels. The intended challenge
for the learning algorithm is thus to recover the latent variables by observing the generated data. An alternative
way would be to label data using an exemplary algorithm (or human), but we only consider data generation here.

By creating data with low complexity and dimensionality, and reducing those of the neural network accordingly,
inspection can be performed manually in order to obtain maximal insight. Also, this makes training and other
computations fast, allowing for quick iterations and possibly for use of analysis methods that would be infeasible
otherwise.

3.1 Applicability to real data

An important question is of course whether an algorithm that works well on such a toy dataset will also work well
on real world data. There are two points to make about this.

Firstly, the wider applicability relies on the assumption that there are fundamental principles of intelligence that
work for many types of data. This assumption is commonly made already, as a dataset like mnist is also only
intended as a proxy for many types of real world data (the demand for digit recognisers is not that big). Results
on toy data should not be expected to map directly to performance on real data, but the fundamental principles
(and limitations) may apply to both. For example, if an algorithm is incapable of solving a simple xor-problem,
neither will it work on real world data that has similar non-linearities.

Secondly, the solution (and big challenge in this method) lies in devising good data generators, whose data possesses
properties found in real world data. Devising such generators may besides be a good exercise that forces us to think
about the structure and properties of real data. Di�erent generators with di�erent non-linearities, statistics and
such can be created, both to resemble di�erent types of real data, and to test one's algorithm for its qualities in
relative isolation (e.g. testing for second order relations separately from testing for bias-insensitivity).

3.2 Generator design

Generators could take many forms. the only requirement is that the latent variables provide a concise description
of the data and you would expect a good learner to be able to recover them. An important point here is that the
choice of hidden labels is strongly connected to what you want or expect your algorithm to learn.

4

Start: random pick from
{1000, 0100, 0010, 0001}

l1

l2 0 0 01

0 0 0 01 1

random pick from
{001101, 001001, 000101,
 001100, 001000, 000100}

0

00101010001000001010 00000000000001011000

e.g. 0100

000101

latent variables
(hidden labels)

generated data sample

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0

0 1 2 3

note that each bit in l2 has a
different set to pick from

set bits at
8 random

even indices

set three or four bits
at indices 13 to 16

Figure 2: The toy data generation process used in the experiments.

In the experiments described below, toy data has been generated by a process using layers of latent variables. A
value for the top layer is picked, and each layer determines the value of the (larger) layer below it, ending with
the produced data sample at the bottom (see �gure 2). The bits in a layer form a distributed representation, each
bit standing for some modi�cation it can apply to the layer below. For this experiment, each active bit picks a bit
pattern from its own probability distribution, and the logical or of these picked patterns constitutes the value of
the next layer. For the top layer, we choose only one bit, which can be considered the `class' of the data sample.

The idea behind the generation process is that the resulting data sample consists of a non-linear combination of a
few factors, from which a neural network should �rst infer the middle-layer bits that produced this pattern, and
from these inferences the network's next layer should be able to infer the original value of the top layer (the sample's
`class'). The intuition for this layer-wise inference originates from popular knowledge about visual perception, in
which lower layers detect simple features, which are combined by higher layers to recognise more complex patterns.

The generation method seems a nice simpli�cation of real world processes in which a few latent variables together
cause a large-dimensional input. For example, the choice of which digit to draw determines (with some randomness)
the pen's starting location and rough directions, which (again with some randomness) determine which pixels are
coloured. The current approach involves a simple or of bit patterns, but one can see how more interesting non-
linearities could be created by assigning di�erent functions to di�erent bits. For example we could have one bit
determine whether the left half next layer will be inverted. Or, by having some bits determine how many places to
shift the �nal output bits, one can test if one's algorithm learns to be invariant to translation: if it does, it will still
correctly infer the values of the other latent variables regardless of the presence of shift.

The choices about the number of variables in each layer and the patterns they create have been rather arbitrary.
The plan was to not make it too di�cult to recognise features; knowing the rules it should be easy to do by hand.
At the same time, it should not be trivial either, so for example a single bit should never give enough information
to infer the value of a latent variable, and a single intermediate latent variable (a bit in \bfl \bfone) should not pin down
the top level latent variables (\bfl \bftwo). For the complete rules, read the source in toydata.py. Some samples along with
their latent variables can be generated like this:

5

from toydata import toydata

toydata(n_samples=5)

[['1000', '000011', '01010001010100111101'],

['0100', '000100', '10000010101000000010'],

['1000', '000011', '01000101000101011101'],

['1000', '000010', '00000001000101010100'],

['0010', '110100', '11111011111010001111']]

The e�ect of each feature can be inspected by manually �xing the value of one or both of the latent layers:

toydata(n_samples=5, latent_vars=['1000'])

[['1000', '000011', '00000100000101110001'],

['1000', '000011', '01010101010000111001'],

['1000', '000010', '01010001010100000000'],

['1000', '000011', '00000101010001111001'],

['1000', '000001', '00000000000001011000']]

toydata(n_samples=5, latent_vars=['0000', '100000']) # (l2 is irrelevant now)

[['0000', '100000', '10111111100000000000'],

['0000', '100000', '01010111110000000000'],

['0000', '100000', '11010011110000000000'],

['0000', '100000', '11010101100000000000'],

['0000', '100000', '11110100010000000000']]

One remark to be made is that there are in fact more latent variables involved than are stored in the hidden labels.
The information about which pattern is picked from a bit's probability distribution is not recorded, implying that
the hidden labels do not provide a full description of the data. Also, in the other direction, the same sample could
sometimes have been created by di�erent choices of hidden labels, as information is lost in the or function. Both
the generation and (best possible attempt at) inference are thus probabilistic functions. This is not considered a
problem, as it is often the case in real world situations too.

4 Unsupervised learning

Have described the general method and toy data generator, this section and the next will cover the experiments
performed with this toy data. To start with, a training and a test set are generated, each containing 2000 samples.

trainingset = generate_dataset(N_train)

testset = generate_dataset(N_test)

In this section, the main question is whether a common unsupervised learning algorithm would �nd features that
correspond to the latent variables used during generation. For this experiment, I chose to use Restricted Boltzmann
Machines (RBM), for no speci�c reason. To make testing simple, two RBMs are used, one stacked upon the other,
and the layer sizes are picked such that they match the number of hidden labels of the data.

model = StackedRBMs(trainingset.layer_sizes)

6

Stacked RBMs have been used before for initialising weights of deep neural networks[2], after which inference can
be performed by computing the conditional probabilities of the �rst layer's hidden units given the visible units
(\mathrm{p}

\bigl(
h[i] = 1 | \bfv

\bigr)
), and using these values as input for the next RBM to do the same trick again. In the ideal albeit

unlikely case, these inferred conditional probabilities at the top layer would match exactly with the actual classes
one was planning to predict, making it a perfect classi�er after only unsupervised training. Note that because the
conditional probabilities are not sampled from but are instead used as the next layer's input values directly, each
layer after the �rst performs a mean-�eld approximation only. Also, the inference proceeds in a single upward pass,
thus behaving much more like a multi-layer perceptron network than like a Boltzmann machine.

In this experiment, we wish to compare how well the inferred values of \bfh \bfone and \bfh \bftwo will match with the data's hidden
labels \bfl \bfone and \bfl \bftwo , respectively. Because any unit in a layer could have learned to detect any of the features, we �rst
reorder the units of both activations \bfh \bfn such that the units have maximal correlation with the hidden labels \bfl \bfn .
Correlation here means the proportion of agreements \mathrm{r}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}

\bigl(
hn[i]

\bigr)
= ln[i], minus the proportion of disagreements,

giving a score in the range [- 1 . . . 1]. If a column correlates strongly but negatively, it is also matched but the whole
column is inverted (hn[i] \leftarrow 1 - hn[i]).

Apart from measuring these correlations, we also measure how well the model would classify samples. Because in
our data set \bfl \bftwo always has exactly one active bit, \bfh \bftwo could be interpreted as a label prediction, and we measure its
accuracy by comparing for which proportion of the samples \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}i h2[i] = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}i l2[i].

For further details regarding the comparison, read evaluation.py.

4.1 Learning

First, the stacked RBMs are trained with the generated training set. Next, the test set transformed by the RBMs
to obtain \bfh \bfone and \bfh \bftwo , which are compared to the hidden labels.

train_unsupervised(model, trainingset)

results_rbm_learning = evaluate_model(model, testset)

fig = plot_correlations(results_rbm_learning['metrics']['correlations'])

Figure 3: Correlations between hidden labels and RBM unit activations

7

fig = plot_weights(results_rbm_learning['ws'])

Figure 4: Weight matrices of the RBM's layers

For investigation of the results, it is most insightful to look at the activations of the �rst hidden layer (\bfh \bfone), as the
second layer's performance is heavily in�uenced by that of the �rst. Although there certainly are some correlations
between the units' activations and the hidden labels, most units do not re�ect a single hidden label as much as I
hoped for. Part of the reason (apart from my hopes simply being too high) may be that the toy data is still too
complex for such a simple model. An indication of this is that the simpler features (e.g. number 2, always turning
on the same three bits) are learned and detected quite well by a single unit in nearly every run of the experiment.
Other features, that have more stochasticity, seem to be more easily mixed up by the units.

A look at the weight matrices suggests that each unit is quite sensitive to several features, as for example in most
rows one can clearly see the chequered pattern that matches feature 3 and 4, which respectively activate some even
or some odd bits. One explanation for this is that to detect one feature, one needs to ensure the feature's bits
were not actually activated by another feature, so even if each unit would watch for one speci�c feature, the weight
matrix would look like features are mixed up. This mixing of several patterns into each weight vector makes it more
di�cult to read the weight matrix.

Also from the correlation matrix between hidden labels and unit activations of the �rst layer (the top left matrix in
�gure 3), it can be seen that most units correlate with several hidden labels. Not coincidentally, the combinations
of features seem to match somewhat with the patterns picked by the generator's top level latent variables. This is
completely understandable, for two reasons:

1. Because in the test data the features occur in speci�c combinations, activations are expected to correlate
accordingly.

2. Because in the training data the features occur in these combinations, their combinations are considered
features themselves. Stacked RBMs are trained in a greedy layer-by-layer manner. The bottom RBM thus
optimises its weights to mimic its input's probability distribution as well as possible, and learning to detect
our desired features separately would ignore the correlations between those features.

8

We can modify the data generation for the test set to examine the in�uence of the �rst cause. To prevent the features
from occurring only in particular combinations, the top layer in the toy data generation can be modi�ed such that
any feature co-occurs equally often with any other feature (using generate_uncorrelated_dataset). Even simpler
data can be created by activating only a single feature per sample (using generate_single_feature_dataset).
In either case, the correlations diminish somewhat but a signi�cant part persists. As would be expected, the
correlations also diminish when training the model with the `uncorrelated' data, but a signi�cant mixing of features
still remains, presumably because of the mentioned reason of data complexity.

The second RBM, having four units, appears to usually end up with two units' activations correlating with the
�rst two top level labels, the other two doing the same for the other two labels. The reason for this has not been
investigated further.

4.2 Representational power

Given that the RBMs do not learn to detect the hidden labels as well as was hoped for, an interesting question
is now whether it is possible at all to �nd model parameters that would give the desired results. To try this out,
I modi�ed the RBM's contrastive divergence training algorithm so that instead of using an inferred value of \bfh to
strengthen the weights in the positive phase, it is forced to use the hidden labels.

model = StackedRBMs(trainingset.layer_sizes)

train_with_hidden_labels (model, trainingset)

results_rbm_power = evaluate_model(model, testset)

fig = plot_correlations(results_rbm_power['metrics']['correlations'])

Figure 5: Correlations for RBMs with (close to) ideal parameters

fig = plot_weights(results_rbm_power['ws'])

9

Figure 6: Weights of RBMs with (close to) ideal parameters

As is clear from �gure 5, the results of this check are much better than those of unsupervised learning, giving
correlations between hidden labels and unit activations around 0.9, and similar numbers for classi�cation accuracy
every run of the experiment:

[experiment_rbm_power()['metrics']['class_accuracy'] for _ in range(5)]

[0.9415, 0.9495, 0.928, 0.9395, 0.9285]

Strong and seemingly undesired correlations are still visible between h1[0] and h1[1], and also h1[2] and h1[3], but they
do not di�er much from the correlations in the test data itself (inspectable with experiment_data_autocorrelation),
so that could largely account for these correlations.

Though this result shows that the model, given the right parameters, is capable of detecting our desired features
reasonably, it does not yet tell why the learning algorithm does not �nd these desired parameters. It could be that
this parameter setting forms another optimum, and given some lucky initialisation parameters the model would
end up there, or it could be that the desired result does not satisfy what the model wants to learn. To test which
is the case, after having performed the modi�ed training to �nd the desired parameters, we train the model again
but with normal unsupervised training.

Note: still using the same model

trainingset2 = generate_dataset(N_train)

train_unsupervised (model, trainingset2)

results_rbm_power_stability = evaluate_model(model, testset)

fig = plot_correlations(results_rbm_power_stability['metrics']['correlations'])

10

Figure 7: Correlations matrices showing that unsupervised training steers away from `ideal' parameter setting

The result shows that the RBMs tend to move away from the desired parameters and become less performant by
our metrics, so our desired setting is simply not what the learning algorithm tries to �nd. This is of course not a
big surprise, as the RBM's learning algorithm was not designed for the type of task we are giving it here.

4.3 Experiment conclusion

Apparently, stacked RBMs are not really the right tool for our purpose. Firstly, RBMs are not made for the job.
Looking at the correlations between hidden labels and unit activations, it becomes clear how the �rst-layer units
learn combinations of frequently co-occurring features, rather than the individual features we would like it to detect.
Inspecting the weight matrix gives impression too, although is seems more di�cult to read. The learning algorithm
optimises for a goal di�erent from ours. Secondly, the simplistic way of stacking RBMs is unsatisfactory. The layers
are not `aware' of each other, and di�erent training schemes should be used to improve their teamwork, as has also
been pointed out by others[4]. Perhaps using a Deep Boltzmann Machine[5] instead could have been a solution
here.

Apart from concluding that this algorithm is inadequate for our goal, we should also consider the possibility that it
`outsmarts' us and we should actually revise the goal instead; for example I may have been too predetermined about
which features should appear in each layer. Given the observations, it seems worth to rethink how an intelligent
algorithm should handle correlating but distinct features. My intuition after this experiment is that we should search
for an algorithm that behaves a bit more like Independent Component Analysis, in that it tries to discriminate
separate phenomena.

5 Supervised learning

While in the previous section we assessed whether an unsupervised learning algorithm starts to distinguish the
latent variables that generated the data, the question is now whether a supervised learning algorithm learns to
distinguish the intermediate latent variables (\bfl \bfone) when it is trained to classify the top level latent variables (\bfl \bftwo).

11

Most of the experiment setup remains the same, except that instead of a stack of two RBMs of six and four units,
a Multi-Layer Perceptron (MLP) with four (softmax) outputs and a hidden layer of six sigmoid units is used.

trainingset = generate_dataset(N_train)

testset = generate_dataset(N_test)

model = MLP(trainingset.layer_sizes)

5.1 Learning

Learning is done using standard backpropagation learning with a small L2 regularisation. The exact hyperparam-
eters are not important for this experiment, and can be found in the code (see mlp_theano.py).

train_supervised(model, trainingset)

results_mlp_learning = evaluate_model(model, testset)

fig = plot_correlations(results_mlp_learning['metrics']['correlations'])

Figure 8: Correlations between (partially hidden) labels and MLP unit activations.

fig = plot_weights(results_mlp_learning['ws'])

12

Figure 9: Weights of the trained MLP

An indication of the classi�cation accuracy is given by the values on the diagonal of the correlation matrix of \bfl \bftwo
and \bfh \bftwo (the bottom right matrix in �gure 8). The data seems simple enough to classify quite accurately, with little
variation among experiment runs:

[experiment_mlp_learning()['metrics']['class_accuracy'] for _ in range(5)]

[0.947, 0.9325, 0.9335, 0.9515, 0.941]

As with the RBMs, we can see from the correlation matrices of \bfh \bfone (the left ones in �gure 8) that each unit correlates
with several hidden features. Again, some are much more indicative of the top level latent variables (\bfl \bftwo) than of the
bottom ones (\bfl \bfone). This may be even more expectable than before, as the network has this time been speci�cally
trained to recognise the \bfl \bftwo variables.

5.2 Representational power

Like before, we can check how close to our goal the model could come when the parameter settings are set to
an ideal con�guration rather than learned from training data. The `ideal' con�guration is found by using logistic
regression to train each unit in the MLP's hidden layer to predict the normally hidden labels \bfl \bfone when given the
input data, and then likewise train the output layer to predict \bfl \bftwo given \bfl \bfone .

2

model = MLP(trainingset.layer_sizes)

train_with_hidden_labels(model, trainingset)

results_mlp_power = evaluate_model(model, testset)

fig = plot_correlations(results_mlp_power['metrics']['correlations'])

2In hindsight, a more logical method would be to simply add the error between \bfh \bfone and \bfl \bfone to the training cost function.

13

Figure 10: Correlations of MLP with (close to) ideal parameters

fig = plot_weights(results_mlp_power['ws'])

Figure 11: Weight matrices of MLP with (close to) ideal parameters

As performing inference in the MLP is practically the same process as in the stacked RBMs (apart from the softmax
output), it should not be surprising that its representational power is quite similar. The small di�erences that do
show up here must then have come from the di�erent methods used to �nd the `ideal' parameters.

An interesting question is of course whether the classi�cation accuracy has improved or diminished:

14

[experiment_mlp_power()['metrics']['class_accuracy'] for _ in range(5)]

[0.9315, 0.943, 0.9405, 0.9415, 0.9285]

Apparently, the classi�cation accuracy is nearly as good as with normal supervised training. Although perhaps
slightly sub-optimal, �rst inferring the hidden labels thus seems quite a decent way to infer the class label for this
data set.

5.3 Experiment conclusion

Apart from the obvious di�erence that the activations \bfh \bftwo match the top level labels \bfl \bftwo much better, as is to be
expected from supervised learning, the correlations between activations and hidden labels seem to form rather
similar patterns to those of the RBM. The patterns visible in the hidden layer's weight matrix seem somewhat
di�erent however, and also di�er between runs of the experiment. They seem to mix up the di�erent features a
little bit less, but still often take correlating features together to recognise them as one.

This behaviour of combining features that frequently co-occur is probably the most interesting insight from both
experiments. Conceptually, it relates to the hypothesis that the brain works with a ��rst forest, then trees� approach:
in a given picture, we would �rst see a forest (the higher level class), and only after that we discern the individual
trees (intermediate features). However, in creating the toy data generator and its hidden labels, I presumed that
a feed-forward neural network should �rst distinguish the individual features and combine those to infer the class,
making it see ��rst trees, then forest�. In a way, from the results of this experiment we could say that the MLP
follows a ��rst forest, no trees� approach, as it (to some extent) only detects combinations of features. Though this
may be an e�cient approach in the task it is trained for, my intuition is that distinguishing individual features
is ulmitately more helpful, for example to reuse the features for other tasks (transfer learning) and maintaining
performance when features or other circumstances change.

6 Conclusion

This report has covered two things: Firstly, it introduced a method for evaluating neural network algorithms, and
secondly it covered initial experiments using this method. Despite the experiments taking up the bigger amount
of pages, they mostly just served as a proof of concept. With more attention and scienti�c scrutiny they could
probably lead to more valuable results, as quite some decisions have been taken somewhat arbitrarily, especially
regarding the toy data generation. Also the measurements for evaluation have been a bit ad-hoc. For example,
correlation (adapted to count binary matches) has been used primarily, which is sensitive to the bias of the data:
two sparse features always correlate well because both are mostly zero.

However, the main purpose of this research was to try out if the method has a potential value in the development
of learning algorithms. Although more experimentation and real usage are needed to �nd that out, I think it looks
promising enough to pursue. At least for me it provided insight in how RBMs and MLPs learn. It may yet have to
be found out in which situations the method is useful, and what types of data to generate.

The essence of the method is to reduce a real world problem to one at a toy scale. A fundamental requirement
for this reduction is that you understand your problem, in order to retain its properties on smaller scale. As you
have to provide the desired features or hidden labels yourself, the method seems �t for cases where you actually
understand what you want your algorithm to learn, but just do not know how to make an algorithm that learns it.

An important question is how tightly the type of comparison, the toy data generator, and the type of learning
algorithm are tied together. The comparison function may have to be designed speci�cally for a toy data generator,
because for di�erent types of data there may be di�erent desired properties. Likewise, the comparison function may
have to be designed speci�cally for the internal representations of the algorithm under test, for example to make it

15

invariant to permutations, biases or other properties. Imagine the toy data having latent variables representing a
number in binary encoding, whereas the neural network produces a one-hot encoding: the comparison needs to know
about both sides. If it is possible to su�ciently decouple the design of the data generator, comparison function and
learning algorithm, it would enable easy reuse across algorithms, saving e�ort and enabling standardised comparisons
between algorithms.

Future work

The most important thing to do next is to design toy data generators, and investigate their correspondence with
types of real world data. It would be a good indication when algorithms with a good performance on the toy data
set would also score well on the real world data set.

Di�erent types of generators could perhaps test for di�erent properties properties of algorithms in relative isolation,
such as bias or translation invariance, use di�erent types of non-linearities and relations, test for generalisation, et
cetera. If it is possible to standardise the experiment setup, it may be worthwhile to create a collection of toy data
generators, providing an easy way to test a newly designed architecture for several properties.

Regarding evaluation, there could be better ways for measuring the algorithm's performance on a toy data set. In
these experiments, neural activations have been compared to hidden labels, after reordering neurons to �nd the best
matches. Many other ways of comparison could be possible however. Instead of using the activations, the network's
weights or its mapping function could be accessed more directly, removing in�uence from particularities of the test
set from the evaluation.

References

[1] Quoc V. Le et al. Building high-level features using large scale unsupervised learning. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 8595�8598. IEEE, 2013.

[2] Geo�rey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527�1554, 2006. See section 4.

[3] Christopher Olah. Visualizing Representations: Deep Learning and Human Beings.

[4] Nicolas Le Roux and Yoshua Bengio. Representational power of restricted Boltzmann machines and deep belief
networks. Neural Computation, 20(6):1631�1649, 2008. See section 3.2.

[5] Ruslan Salakhutdinov and Geo�rey E Hinton. Deep boltzmann machines. In International Conference on
Arti�cial Intelligence and Statistics, pages 448�455, 2009.

[6] Scikit-learn. sklearn.datasets sample generators. Some example toy data generators.

16

http://arxiv.org/abs/1112.6209
http://colah.github.io/posts/2015-01-Visualizing-Representations/#the-space-of-representations
http://research.microsoft.com/en-us/people/nicolasl/representational_power.pdf
http://research.microsoft.com/en-us/people/nicolasl/representational_power.pdf
http://scikit-learn.org/stable/modules/classes.html#samples-generator

	Introduction
	Method
	Feature comparison
	Assessing representational power

	Toy data generation
	Applicability to real data
	Generator design

	Unsupervised learning
	Learning
	Representational power
	Experiment conclusion

	Supervised learning
	Learning
	Representational power
	Experiment conclusion

	Conclusion

